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SUMMARY

A preliminary assessment of the HIP consolidation of aluminum-rich intermetallic alloys and Al 3Ti
matrix, SiC fiber composites has been completed. Ashby's HIP 6.0 software was a useful tool in
approximating the material's consolidation behavior. Experi-mental data (density and processing
conditions) for HIPed AI3Ti were successfully used to adjust material property variables, and thus, the
HIP map. It is important to note, however, that the HIP consolidation of A 3Ti powders requires
significantly higher temperatures and pressures than those predicted from the untuned Ashby models.

The consolidation AI3Ti/SiC composites proved difficult because aluminum-rich A 3Ti was found to
be thermodynamically incompatible with SCS-6 and TiB2 coated SCS-6 fibers. The excess aluminum
reacted with the SiC fibers extensively. Titanium-rich A3Ti Is also not a desirable matrix material
because titanium is highly reactive. Unfortunately, obtaining stoichoimetric Al 3Ti is very difficult; A 3Ti
has a narrow compositional range and under goes a sluggish peritectic solidification reaction. Alloying
additions, such as Nb, are being explored as a means of enhancing processiblity by ex-panding the
compositional range in which AI3Ti can exists as a single phase alloy.

vi
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Aluminum-Rich Intermetallic Alloys

The exploration of the aluminum rich portion of the aluminum-titanium phase diagram is in its
infancy. As illustrated by the aluminum-titanium phase diagram, AI3TI is an aluminum rich,
thermodynamically stable intermetallic existing both at ambient and elevated temperatures, Figure 1 [3).
In addition, because these intermetallics are approximately 75 atom percent aluminum, their oxidation
resistance is expected to be superior to that of the alpha-two and gamma titanium aluminides. Indeed,
Yamaguchi, et al. 12] report that the oxidation rate of A3Ti may be a factor of 10 slower than that of
gamma-TiA. Recently, Parfitt et al. [41 rerorted a specific weight gain of 60 mg/cm during cyclic
oxidation of AI.Ti in air at 1473 K.

The use of titanium trialuminides has been seriously Impeded by their lack of tensile ductility and
their poor fracture toughness. At ambient temperatures, the preferred deformation mode of A3Ti Is by
twinning of the { 1111 < 112 > type [2]. Attempts have been made to improve ductility by alloying with
various transition elements, e.g., Fe, Cu, Mn, Cr, and NI 15,6,71. Alloying with these transition elements
can convert the crystal structure of AI3Ti from DO2. to L12, and rapid solidification has enabled the pro-
duction of high purity materials with very fine microstructures [8,9]. Unfortunately, even though some
(AI,X) 3Ti compounds have an L12 crystal structure, they too fail in a brittle manner: transgrannular
cleavage predominates on the (110) and (111) planes [10,11,12).

Fiber Toughening In Brittle Matrix

Continuous fiber reinforced IMCs are being investigated as a means of Improving the strength and
enhancing the toughness of brittle aluminum-rich intermetallic alloys. The presence of fibers may slow
down or arrest crack growth by deflecting and bridging cracks [13]; the strength of the composite is
enhanced by the transference of load to the higher strength fibers. In order for the crack bridging
mechanism of fiber toughening to be operative, fiber-matrix debonding must occur prior to fiber failure
at the crack front. Once debonding has occurred, the sliding resistance along the interface governs the
load transfer. This is exemplified by fiber pull-out. The toughness of the material is increased by a high
rate of debonding and a low sliding resistance along the debonded interface.

Critical in the development of these composites is the thermodynamic and mechanical compatibility
of the fiber, matrix, and fiber-matrix interphase region [14]. The properties of the interphase dictates
how much fiber-matrix debonding occurs. The approach taken in this study was to enhance the
toughness of the AI3Ti matrix by use of rapid solidification technology and to augment the toughness
of the composite by use of SCS-6 filaments as reinforcing fibers.

Hot Isostatic Pressing

Near-net-shape processing by HIP is of significant technological importance. Application include
the consolidation of metals, ceramics, and composites; the healing of superalloy turbine engine compo-
nents; and the joining or coating of dissimilar materials [15,16].

Crucial to the understanding of how aluminum-rich intermetallic alloys and IMC can be HIP
consolidated is the development of accurate models to describe densification. Ashby 117,18,19] has
pioneered the development of models describing the consolidation of monolithic metals, ceramics, and
intermetallic powder alloys. The fundamental equations describing densification are presented in
Figure 2. Nomenclature used in the equations is defined in Table I. Equations for "Stage 1
densification are valid for densities up to 0.92 of theoretical; Those for "Stage 2" densification are valid
at densities greater than 0.92.
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Table I - Nomenclature and Units

a Relative density
A. Initial relative density
A, Relative density at which pores close
A Densification rate (s")
sDb Boundary diffusion coefficient times thickness (m3 s-')
D, Volume diffusion coefficient (m2s 1)
D, Dislocation diffusion coefficient (m2s ' )

F Dimensionless driving force for densification
G Grain diameter (m)
k Boltzmann's constant (J/K)
N Avogadro's number (mot")
P External pressure (MPa)
Pe Effective pressure on a neck (MPa)
P. Outgassing pressure (MPa)
P, Gas pressure inside a closed pore (MPa)
R Particle radius
T Temperature (K)
Tm Melting Temperature (K)
t Time (s)

Surface free energy (J/m 2 )
n Stress exponent (s')
n Atomic volume (M3)
SY Yield strength (MPa)
S, Stress at T,/2 for a creep rate of 10"6 s-

HIP consolidation of IMCs is far more complicated than the consolidation of monolithic alloy
powders. Careful consideration must be given as to how to achieve full (or optimal) density without
degrading the properties of the intermetallic matrix or the ceramic reinforcement. In general, the
temperature and pressure must be sufficiently great to consolidate the matrix, but low enough to
minimize fiber-matrix reactions and inhibit fiber plasticity. In addition, in order to avoid deleterious
residual stresses, careful consideration must be given to differences in thermal expansivities of the
composites constituent phases. Temperature-pressure-time processing profiles must be employed
minimizing thermally induced stresses.

Experimental Procedure

Materials Processing - The composition of the alloys examined in this study are given In Table II.
High purity elemental aluminum, copper, and titanium were used in sample preparation. The castings,
weighing 0.25 to 0.35 Kg, were prepared in a water cooled copper hearth by arc melting. Prior to
melting, the chamber was evacuated to 10' to 1V torr and backfilled with high purity argon. The
specimens were melted a minimum of three times and turned between each melt.

2
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Table II - Target Alloy Compositions, At.% (Wt.%)

Alloy Aluminum Titanium Cope
A13Ti 75.0 25.0

(62.8) (37.2)
A15CuTi2  62.5 25.0 12.5

(45.9) (32.6) (21.6)

Rapidly solidified alloys were prepared by melt spinning in a Marko Materials Melt Spinner. Melt
spinning is accomplished by arc melting the alloys in a water cooled copper hearth. The hearth Is tilted
allowing the molten metal to be extracted by a rapidly spinning (approximately 27 ms") molybdenum
wheel.

The melt spun ribbon was comminuted into powder using a hammer mill. The alloy powders and
fibers were encapsulated in right cylindrical cans (approximately 0.025 m in diameter by 0.12 m long)
of either titanium or steel. The cans were hot vacuum degassed, sealed, and helium leak checked. The
materials were consolidated in a computer controlled Autoclave Manufactures HIP for four hours (see
Table Ill).

Table III - HIP Conditions for Monolithic
and Composite Materials

Material TemD. °C Pressure. MPa
A3Ti 1000 172.4

1100 172.4
Al3Ti 1000 172.4
+ SiC 1100 172.4
AICuTi2  1250 200

The HIP process schedule used to consolidate AI5CuTi6 is characteristic of the
temperature-pressure-time profiles used to consolidate all the materials. Prior to commencing the HIP
compaction cycle, the HIP vessel is evacuated and purged with Ar several times. The temperature is
controlled at 100 OC, and the vessel is pressurized to 41.4 MPa. The temperature and pressure are then
ramped to the set point (1250 °C and 200 MPa) and held there for four hours. Prior to depressurization,
the furnace power is turn off and the vessel is allowed to cool to a temperature below 600 °C.

Composite Processing - The composites were made from the melt spun AI 3Ti alloy powder. The
matrix was reinforced with two different filaments: (i) SCS-6 and (ii) SCS-6 coated with TiB2. Textron
Specialty Materials produced these fibers. The SCS-6 fiber is a 140 am diameter monofilament
produced by chemical vapor deposition (CVD). It consists of a carbon core and radially oriented o-SiC.
The surface of the fiber has a carbon rich layer. The high strength (72.5 MPa), high modulus (415 GPa),
and low density (3.0 gcm 3) of SCS-6 fibers make them attractive for use as reinforcing fibers.

AI3Ti powder plus SCS-6 fibers and AI3Ti powder plus TIB2 coated SCS-6 fibers were encapsulated
in titanium cans. The materials were cold pressed to approximately 70% of their theoretical density.
The canisters were then hot evacuated (one hour at 400 °C), and sealed. The composites were then
consolidated by hot isostatic pressing (HIP).

HIP Map Formulation - HIP maps delineating the consolidation response of monolithic AI3Ti alloy
powders were generated using HIP 6.0 Software [171. The basic material properties used to generate
the HIP maps are presented in Table IV 12,3,7-9,20-24). The physical and mechanical property data
not found in the literature were estimated by the software using a set of scaling relationships 117,181.

3
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Table IV - Material Properties for AI3Ti Used to Generate
the Ashby HIP Maps: (A) Data Fit to Experimental Results and

(B) Data Obtained from Scaling Relationships

eneral Properties A B

1. Structure Type Intermetallic = 2 2

2. Solid density Kg/m 3  3350 3350

3. Melting point K = 1623 1623

4. Molecular weight Kg/kmol = 128.84 128.84

5. Weighted atom-volume m3/atom1  = 6.368E-29 6.368E-29

6. Surface energy J/m 3.50 3.50

lechanical Properties
7. Youngs modulus at R.T. GPa = 170 170

8. Yield stress at R.T. MPa = 175 175

9. T-dependence of Yield stress = 0 0.3

10. Power-Law Creep exponent - 11 3
11. Reference stress P-L creep MPa = 250 87.5

12. Activ. energy for P-L creep kJ/mol = 242.89 242.89

13. LT to HT creep transit. temp K = 973 811.50

14. C for LT creep (QLTC = C*QC) .7 .7
iffusion Properties
15. Pre-exp volume diffusion m2/s = 1.OOE-4 1.00E-4

16. Activ. energy, vol. diff. kJ/mol = 242.89 242.89

17. Pre-exp. boundary diffusion m3/s = 4.OOE-14 4.OOE-14

18. Activ. energy, boundary diff. kJ/mol = 162.73 162.73

Grain Growth
19. Pre-exp. surface diffusion m3/s = 1.20E-9 1.20E-9

20. Activ. energy, surface diff. kJ/mol = 242.89 242.89

21. Pre-exp. boundary mobility m3/s = 2.OOE-14 2.OOE-14

22, Activ. energy, bdry mobility kJ/mol = 202.81 202.81

article Characteristics
23, Particle radius m = 1E-4 1E-4

24. Ratio of radii Rmr,,/Rmar - 3 3

25. Grain diameter in particle m 1E-5 1E-5

ources for materials data-estimates:
(A&B) [8,9]:
(A&B) [3];
(A&B) 1201;
(A&B) [2,5,7,21,23,24];
(A) [2,7,21,23.241;
5(A) [22]:

The HIP maps were further tuned using experimental HIP data generated In this study.

Microstructural Characterization - X-ray diffraction was used to identify the phases present and

to monitor the changes in lattice parameter in the melt spun ribbon alloys and HIPed specimens.

X-ray analysis was performed on a Rigaku DMAX-B X-ray unit equipped with a 0/28 goniometer

and a graphite monochromator. X-rays were generated using a copper tube operating at 40 KV and
30 ma.

Compositional analysis of the melt spun and HIPed materials was performed on an Amray

4
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scanning electron microscope (SEM) equipped with a Kevex 8000 energy dispersive X-ray
spectrometer. The SEM was operated at 20 KV in the secondary electron emission and
backscattered imaging modes.

The HIPed materials were mounted in dially phthalate and hand polished. In order to ascertain
the amount of porosity, the specimens were examined in their unetched condition and using
polarized light. The line intercept method was used to measure the volume fraction of porosity.

Experimental Results

STRUCTURE AND PROPERTIES OF THE HIPed MATERIALS - The matrices of the composites
consisted of AI3Ti. However, x-ray diffraction confirmed the presence of some residual aluminum in
the alloy powder. The microstructure of the AI3Ti was the same In the consolidated monolithic alloy
and the composite. The AI3Ti matrix was partially recrystallize, and the grains varied In size and
were irregularly shaped. The volume fraction of porosity was measured in the monolithic AI3Ti alloys
and found to vary from 3 to 7.5 %, Table V.

After consolidation, the uncoated SCS-6 fibers could not be located and the SCS-6 fibers which
were coated with TiB 2 had reacted extensively, Figure 3. High concentration of titanium and silicon
were measured in the 200 micron diameter fiber reaction zone. Immediately adjacent to this was an
aluminum rich region.

Table V - Volume Fraction of Porosity for AI3Ti
HIPed for 4 hrs. at 172 MPa.

Tem._. C Porosity Ranae
1000 5.7 4.0-7.5
1100 3.5 3.04.2

The microhardness measurements serve to confirm these observations. The area adjacent to
the fiber was very soft (DPH 76) and the matrix material exhibited the highest hardness (DPH 520).
The hardness of the fiber region (DPH 325) is softer than that of the matrix.

HIP Maps - HIP maps were generated for AI3Ti and are presented in Figures 4 & 5. Figure 4 is
an untuned HIP map generated using available thermodynamic and mechanical property data for
AI3Ti. Figure 5 is tuned (i.e., adjusted) to fit experimental data and incorporate the results reported
in Table V. Examination of the diagrams indicate that consolidation occurs primarily by a power-law
creep mechanism. The variables of significance in the equation governing densification by
power-law creep are the stress exponent, and the reference stress for creep at 106/s, Figure 2.
The HIP maps were tuned by assuming a stress exponent of 11 and reference stress of 250 MPa.

Examination of the untuned and adjusted HIP maps reveals considerable differences. The
untuned HIP map indicates that full density can be achieved In less time and at significantly lower
temperatures. Full density is predicted after 4 hours at 172 MPa and a temperature of 650 *C. The
HIP map fit to the experimental data suggests that in order to achieve full density, AI3Ti must be
processed for 4 hours at 172 MPa and at a temperature greater than 1300 °C.

5
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Discussion of Results

INTERMETALLIC MATRIX COMPOSITE - It appears that the presence of residual aluminum in
the AI3Ti matrix material is severely detrimental. Extensive reaction between elemental aluminum In
the matrix and the SiC fibers occurred during hot isostatic processing. Elemental aluminum melts at
660 *C. Silicon is completely miscible in liquid aluminum at the processing temperature i.e., 1100 OC.
As a result, the liquid aluminum reacted profusely with the SiC fibers; the uncoated SCS-6 fibers
were completely dissolved.

The TiB 2 coated fibers behaved somewhat differently. Although the fibers eventually reacted
with the matrix, the presence of the TiB2 coating inhibited the dissolution reaction. Both the
aluminum and titanium did, however, react with the silicon carbide fibers. The remaining fiber region
contained primarily titanium and silicon. Small traces of aluminum were also detected in the
remaining fiber. This is consistent with studies showing that TiB2 Is effective In slowing down the
interdiffusion of titanium and silicon carbide at annealing temperatures of approximately 800 °C 125].

AI3Ti is a line compound of narrow stoichiometry [3] which solidifies via a sluggish peritectic
reaction. Therefore, avoiding the formation of primary aluminum is extremely difficult. However, it
may be possible to fabricate an AI3Ti matrix, SIC fiber composite from titanium-rich AI3Ti or from fully
annealed, stoichiometric AI3Ti powder. In any event, the reaction kinetics between AI3Ti and SiC
fibers remains to be determined.

HIP MAP FORMULATION - The generation of HIP maps for aluminum-rich intermetallics using
Ashby's HIP 6.0 Software is relatively straight forward. However, obtaining accurate HIP maps
requires knowledge of the properties of the alloy powders or empirical data to tune (adjust) material
properties and constants affecting densification rate.

The equations for densification rate were derived making several assumptions. For example,
alloy powders are assumed to be spherical and of one size (the powder used in this study were
flake-like). The stress exponent is assumed to be constant over a wide range of temperatures, and
the change in yield strength with temperature is assumed to be linear. Alloy powders being HIPed
are assumed to be instantaneously and uniformly brought up to the indicated processing
temperature and pressure. In addition, only hydrostatic stresses are considered.

Further discrepancies in the results can arise because of canister shielding. The canister used
to encapsulate the alloy powders can act to curtail the effective pressure on the powder [26,271.
Similarly, rapid heating rates can cause a large thermal gradient within the material being HIPed.
The hotter powder near the surface may densify more rapidly than the cooler material in the center
of the canister. Once again, the result is a protective shell which inhibits densification.

The alloys examined in this study were consolidated primarily in the material's power-law creep
regime. The applicable equation (see Figure 2) for densification rate has three principal or
controlling variables: (i) the stress exponent, (ii) the reference stress for a creep rate of 10-/s, and
(iii) the activation energy associated with power-law creep. Increasing the stress exponent,
decreases the slope of the time contours on the density-temperature diagrams. Similarly, increasing
the reference stress, shifts the time contours to the right.

6
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Figure 3 - Optical Micrographs: (a) HIP Consolidated AI3Ti
and (b) HIP Consolidated AI3Ti Matrix, SIC Fiber Composite.
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Figure 4 - HIP Map for the Consolidation of AI3Ti Powder at 172 MPa.
Calculated from Thermomnechanical and Mechanical Property Data Found in the Literature.
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